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Effects of Field Orientation on the Driven Lattice Gas
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Steady states of the driven lattice gas (DLG) on triangular, hexagonal and
square lattices with the field at several fixed orientations to the principal lat-
tice vectors were studied by Monte Carlo simulation. In most cases a strong
field suppressed change to a low-temperature ordered phase. On each lattice,
one field orientation that caused nonequilibrium ordering was identified. On
triangular and hexagonal lattices, dependence of energy and anisotropy on
field strength was studied at those orientations. Anisotropic ordering along the
field developed at intermediate temperatures under weak fields. Partial ordering
along the field persisted to low temperature under strong fields.

KEY WORDS: Driven lattice gas; Monte Carlo; hexagonal lattice; triangular
lattice.

1. INTRODUCTION

The two-dimensional driven lattice gas (DLG) was defined for a square
lattice with the driving field parallel to one of the lattice vectors.(1,2) Prop-
erties of the DLG are described in recent books and reviews.(3–5) A strik-
ing feature of the DLG is that a strong field raises the critical temperature
40% above the equilibrium lattice gas critical temperature. In the equilib-
rium lattice gas on half-filled finite lattices with periodic boundary condi-
tions phase boundaries orient along lattice vectors, but in the DLG phase
boundaries parallel the field. Anisotropy due to the field is a key feature
of the DLG. Nearest-neighbor interactions on the square lattice parallel
the lattice vectors, one half parallel to the field, the other perpendicular.
That special arrangement is necessary for the field effects that have been
observed.
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The present work uses the Monte Carlo method to find steady states
of the DLG on the square lattice with a variety of field-lattice orientations,
and on the triangular and hexagonal lattices where lattice vectors are not
orthogonal. On the latter lattices, the field can be parallel to one lattice
vector without being perpendicular to the other and bond directions need
not parallel principal lattice vectors. Eleven combinations of lattices and
field directions are studied. With strong fields, anisotropic particle distri-
butions oriented along the field are observed only when the field is per-
pendicular to a bond direction on the lattice. On the square lattice the
critical temperature is clearly elevated by a field that is perpendicular to
bonds. Anisotropic low-energy steady states develop over broad tempera-
ture ranges on triangular and hexagonal lattices. Clusters oriented along
the field form at intermediate temperatures. If the field is strong enough
they persist to low temperatures.

On the hexagonal lattice, the temperature and field-strength depen-
dences of energy and orientational ordering depend little on lattice size.
For 2×2 and 3×3 lattices, steady state probabilities of particle configura-
tions are calculated by solving the master equation. At low temperatures
relatively few configurations are occupied, their probabilities determined
by the field strength.

2. MONTE CARLO METHOD

The critical density, lattices half filled, was used in all the simulations
reported here. The three lattices’ connectivities (z = 3, 4 and 6) strongly
affect the equilibrium phase transition temperature. Equilibrium values of
kTc/J are 1.52, 2.27, and 3.64 for the hexagonal, square and triangular
lattices, respectively.(6) Temperatures reported are scaled by Tc(0). Where
temperature is reported as T/Tc(0), Tc(0) is the equilibrium critical tem-
perature for the lattice of the type at hand and of infinite size.

The energy of a configuration was calculated in the usual lattice-gas
way: H = −4J times the number of bonds. Boundary conditions were
periodic (toroidal). To calculate a hopping rate, the energy change of a
hop was combined with the dot product of the field and the proposed
hop: �Ehop = �Hhop − E · (hop). Hopping rates were calculated with the
Metropolis rate function, �(�Ehop)=min{1, exp(−�Ehop/(kT ))}.

Most Monte Carlo simulations were run on serial computers. Serial
random number generators used were simple congruential, shuffled con-
gruential and lagged Fibonacci generators(7) for generating initial con-
figurations, for accepting transitions, and for choosing neighbor sites for
possible hops. As a check of the generators, some runs were repeated
with other generators.(8) No significant differences were found. Most
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calculations on larger lattices were done in parallel mode (by the “embar-
rassingly parallel” method of dividing runs among nodes) using the LAM
message passing interface(9) and the additive lagged Fibonacci generator in
the SPRNG(10) library of random number generators.

For a particular temperature, field and lattice, a typical calculation aver-
aged the results of 16 runs, each of which discarded 107 equilibration steps
and then collected data at intervals of 103 steps for 106 steps. Some condi-
tions required more and longer runs. Reported data used enough runs and
steps so that the rate of change of energy with respect to steps, estimated by
linear regression, was less than twice the estimated standard deviation in the
rate of change of energy. That is, energy appeared to have reached steady
state in the data that are reported. Every run was started from a randomly
filled lattice so individual runs were independent of one another whether at
the same or different temperatures. Specially prepared non-random initial
configurations were used to test single-strip stability in a few cases.

For square lattices, the average of the anisotropy parameter m(2–4) was
calculated. Parameter m= (M2

|| −M2
⊥)1/2, where (ref. 3, Eq. (4.5)) M⊥ (M||)

is the average of the magnetization squared in strips perpendicular (paral-
lel) to the field direction, divided by the number of sites on the lattice.
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The structure factor,(11) which is readily applied to arbitrary field orienta-
tions, was calculated for all lattices and field orientations.

The three lattices’ unit cells and the field orientations considered appear
in Fig. 1. Square and triangular cells are singly occupied; hexagonal doubly.
Nearest-neighbor bond directions are shown. Cell dimensions for the lat-
tices were chosen so that the nearest-neighbor distance (“bond length”) was
unity on all lattices. After an initial study of lattice size dependence, rou-
tine calculations used 24 ×24 hexagonal lattices (576 particles) and 32 ×32
square and triangular lattices (512 particles). Infinite-field calculations were
repeated with 48×48 hexagonal and 64×64 triangular lattices.

A field strength |E|=15kT (or simply 15 when kT is incorporated in
E) has been used as a saturating field.(2,4,12,13) That is suitable for tem-
peratures larger than or on the order of Tc(0). The field orientations con-
sidered in this work required calculations both near Tc(0) and at much
lower temperature. If ε/kT is fixed at 15, where ε is the magnitude of
the field, then when kT /J falls below about 0.3 the field becomes irrel-
evant compared to bond energies and the system simply freezes rapidly.
To keep the field dominant to low temperature, the present work used
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Fig. 1. Unit cells and field orientations on the (a) square, (b) triangular, and (c) hexagonal
lattices. Dashed lines show connectivity to nearest neighbors. Open circles are some of the
nearest neighbor sites.

ε =15Jz as the saturating field. Some calculations were done with an
infinite field, in which case hops against (with) the field were forbidden
(accepted) and the usual rate function was used for hops orthogonal to
the field. Figure 2 shows 〈U/(Jz)〉 for a square lattice with the field par-
allel to [11], to compare the results of an infinite field and of using 15kT

and 15Jz for ε. When T falls below (1/3)Tc(0) then for ε=15kT the sys-
tem freezes rapidly, as would be expected for �Hhop dominating E · hop
in �Ehop. If one uses ε=15kT , none of the systems studied in this paper
remains disordered below about T/Tc(0)=0.2, at which temperature 15kT
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Fig. 2. Comparison of the effect of field magnitudes (•) 15Jz, (◦) infinite, and (�) 15kT ,
for a field parallel to [11] on a 32×32 square lattice.

approximately equals 1.5Jz. As Fig. 2 indicates, a field of magnitude 15Jz

is saturating, effectively infinite at all temperatures.

3. SQUARE LATTICE

Figure 3 shows the steady-state energy calculated on a 32×32 square
lattice. The field magnitude is 15Jz. For the [10] orientation, infinite-field
results are also shown and are the same as for 15Jz. The customary field
orientation [10] yields the customary phase transition. Scaling analysis of
ln(m) vs. ln |T/Tc(0)−Tc(E)/Tc(0)| yields Tc/Tc(0)= 1.38, in approximate
agreement with earlier results.(4,13) With the field along [10], the energy
approaches −2Jz at low temperature, as expected in a condensed state,
and tends toward −Jz at high temperature, as expected for a completely
disordered state.

The three other field orientations studied on the square lattice,
[11], [21] and [41], show no evidence of a phase transition. For those

Fig. 3. Energy on the square lattice with saturating field oriented along (•,×) [10], (�) [41],
(+) [21] and (�) [11]. Field strength is 15Jz except (×) indicates infinite field.
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orientations, the energy remains near −Jz down to the lowest temperature
used. For the [11] orientation the asymmetry parameter m was equal to
0.06, much less than unity, at all temperatures. The maximum of the struc-
ture factor was less than 0.4 at all temperatures and moreover occurred at
short wavelengths. This lack of orientational order is consistent with Katz
et al., 1984 statement(2) that nontrivial temperature dependence under an
infinite field is possible only for [10] and [01] field directions.

4. TRIANGULAR LATTICE

Energies on a triangular lattice are shown in Fig. 4 for saturating
fields. As on the square lattice, only one of the tested orientations shows
nonequilibrium anisotropic order. That orientation, [11], is perpendicular
to bonds so rates of hops along [1,−1] bonds are just as under zero field.
Fields of all other orientations drive hops along all bonds, leaving no field-
free lines of bonds. When the field parallels [11] then energy decreases
as ordering increases with decreasing temperature, down to T/Tc(0) =
0.08. The two runs with T/Tc(0) < 0.08 showed no further energy drop.
Figures 5 and 6 show single 64 × 64 configurations at the lowest and
highest temperatures studied, respectively. The apparent disorder in the
low-temperature configuration is consistent with the average energy at
that temperature, −1.37Jz, much above the energy −2Jz of a one-strip
totally ordered configuration. Energies under a saturating [11] field depend
strongly on system size. A strong field tends to disrupt order, selecting
configurations that are only partially ordered along the field direction,
better ordered as the system size increases. The present data and compu-
tational methods are inadequate to address whether, on an infinite lattice,

Fig. 4. Energy on the triangular lattice with field strength 15Jz and field orientations (•)
[10], (�) [41], (+) [21] and (�, �, �) [11]. Lattices are 32 × 32 except (�) 64 × 64 and (�)
16×16.
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Fig. 5. Configuration at T/Tc(0) = 0.03 on the 64 × 64 triangular lattice with infinite [11]
field.

Fig. 6. Configuration at T/Tc(0) = 5.90 on the 64 × 64 triangular lattice with infinite [11]
field.

the low-temperature high-field configurations would reach the minimum
energy 〈U〉=−2Jz.

Figures 7 and 8 show the effect of increasing field strength on the
energy and structure factor S(1,−1), on 32 × 32 triangular lattices. At
low field strengths and intermediate temperatures configurations align with
the field, as indicated by energy curvature changes, corresponding to heat
capacity maxima, and structure factor maxima for field strengths 3J and
6J . At those fields, the system loses its alignment with the field at lower
temperatures and freezes into fully ordered states. Increasing field strength,
at least at these lattice sizes, disperses the intermediate-temperature align-
ment and prevents full order at low temperature. The change of field effect
occurs for ε between 6J and 12J .
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Fig. 7. Dependence of energy on magnitude of a field directed along 32 × 32 triangular
lattice [11]. Values of ε: (◦) 0, (+) 3J , (�) 6J , (×) 12J , and (•) 15Jz=90J .

Fig. 8. Dependence of S(1,−1) on magnitude of a field directed along 32 × 32 triangular
lattice [11]. Symbols as in Fig. 7. Lines are drawn merely to help distinguish the data sets.

5. HEXAGONAL LATTICE

Three field directions, [10], [41] and [21], were tested on the hexag-
onal lattice. (Direction [11] is not listed because it is equivalent to [10].)
Figure 9 shows the saturating field in [41] and [21] directions completely
suppressing the equilibrium phase transition. The [10] field, which is per-
pendicular to a bond direction, does cause partial ordering in the field
direction. (Results of both infinite and 15Jz [10] fields are shown and
are the same.) The slope of the energy is largest at T/Tc(0)≈ 1.2. As on
the triangular lattice, anisotropic ordering increases gradually over a wide
temperature range and does not reach a fully ordered state at the low-
est temperatures used. The data shown are from runs that started from
randomly filled lattices. Runs that start from a single strip along [10] are
stable for 107 or more Monte Carlo steps but eventually break up to a
less ordered state. Data from 24 × 24, 32 × 32 and 48 × 48 lattices show
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Fig. 9. Energy on the 24×24 hexagonal lattice with saturating field oriented along (•) [10],
(�) [41] and (+) [21]. Data are for ε =15Jz except (×) infinite field.

the same gradual energy decrease, Fig. 10, suggesting that the temperature
dependence shown is not the result of small lattice size.

For an infinite [10] field, Fig. 11 shows values of the structure factor,
indicating partial ordering along [10]. The structure factor S(k1, k2) has a
line of maxima along k1 = 0. S(0,1), S(0,3) and S(0,6) are shown in the
figure. Other values of S(0, k2), for 0<k2 <16, are similar. Evidently there
is partial alignment with the field. Unlike the triangular [11] case, there is
no single large wavelength associated with that ordering.

The partially ordered state on the hexagonal lattice resembles in some
respects the “stringy state” that was observed on a square lattice with
anisotropic couplings.(5) There, too, the structure factor transverse to the
field was small but nonzero. Zia et al.(14) proposed that the low-temper-
ature state on a square lattice “is characterized by multiple strips, with a
nontrivial distribution of strip widths.” The low-temperature ordering on
the hexagonal lattice may be a sort of stringy state.

Fig. 10. Dependence of energy on hexagonal lattice size under [10] saturating field. (•) 24×
24, (�) 32×32, (+) 48×48 unit cells.
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Fig. 11. Structure factor S(0, k2) on the 32×32 hexagonal lattice with field 15Jz along [10].
k2 = (•) 1, (�) 3, and (+) 6.

The transition from a low-energy to a higher-energy low-tempera-
ture state occurs at a field strength near 8J , as shown in Fig. 12, and
much as seen on triangular lattices. Fields with ε � 12J reproduce the
infinite-field results. Structure factor S(0,1), reflecting ordering along the
[10] field, is plotted in Fig. 13 for several field strengths. Zero field leads
to an isotropic mix of solid configurations for which the average S(0,1),
S(1,0) and S(1,−1) are all large and equal. A weak field, ε=3J , leads to
enhanced order along the field at intermediate temperatures, peaking near
T/Tc(0)=0.6. Stronger fields, ε=6J and 8J , move along-field ordering to
lower temperatures and preserve it to the lowest temperatures simulated,
at which single-strip configurations along the field are stable. Still stronger
fields, 9J and higher, suppress single-strip ordering along the field, yield-
ing the situation for which structure factors are shown in Fig. 11.

Fig. 12. Dependence of 24 × 24 hexagonal-lattice energy on magnitude of a [10] field.
Values of ε : (◦) 0, (+) 3J , (�) 6J , (×) 8J, (�) 9J, and (•) infinity.



Lattice Gas Field Orientation 871

Fig. 13. Dependence of S(0,1) on magnitude of a field directed along 24 × 24 hexagonal
lattice [10]. Symbols as in Fig. 12. Lines are drawn merely to help distinguish the data sets.

6. PAIR MEAN FIELD THEORY

Pair-level mean field theories of the DLG on the square lattice, with
the field parallel to a lattice vector, have been presented by Dickman,(15)

Pesheva(16,17) and others. The pair mean-field theories focus on clusters of
two lattice sites plus their immediate neighbors. Steady-state probabilities
of cluster configurations are expressed in terms of one- and two-site den-
sities. The pair density functions are steady-state solutions of master equa-
tions. In Dickman’s method the critical temperature is located by finding
the low-temperature limit of stability of solutions with respect to density
fluctuation perpendicular to the field. Pesheva’s maximum entropy method
postulates a form for the entropy as a function of density, then locates
coexisting phases through entropy maxima. At zero field, both theories
yield the Bethe-Peierls mean field critical temperature Tc(0) = 2.885J/k.
Both theories successfully predict Tc to be an increasing function of field
strength. Dickman’s and Pesheva’s pair mean field theories give 3.21 and
3.32, respectively, for kTc(∞)/J .

The pair mean field theories of Dickman and Pesheva were general-
ized to triangular and hexagonal lattices by using three clusters, one along
each bond direction on the lattice. A cluster consists of two central sites
plus their nearest neighbor sites. Figure 14 shows one cluster on the trian-
gular lattice and one on the hexagonal lattice. The number of sites (cen-
tral plus neighbors), nsites, equals 10, 8 and 6 on the triangular, square
and hexagonal lattices, respectively. Arbitrary orientations of the field are
allowed. The rate function for transitions is the same as that used in the
Monte Carlo calculations.

Pair density functions are bk, the probability of a hole adjacent to a
particle along the kth bond direction, and wk and zk, the probabilities of
adjacent vacancies and particles, respectively, along bond direction k. On
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Fig. 14. One of three clusters on the triangular lattice (left) and the hexagonal lattice
(right). The central (L,R) pair, neighbor sites (numbered), unit cells and unit vectors are
shown.

the triangular lattice, bond direction k is along unit vector ek. On the hex-
agonal lattice, bond 1 is along e1 − e2, bond 2 along e1 + e2, and bond
3 is along −2e1 − e2. Singlet density ρ and the bk suffice to determine
wk and zk because wk = 1 − ρ − bk and zk = ρ − bk. The probability of
a particular configuration, or occupancy, α on cluster k is P

(k)
α where k

runs from 1 to nc (nc = 2 for the square lattice, 3 for triangular and hex-
agonal lattices) and α runs over all possible occupations of the cluster’s
sites. Configuration probabilities are calculated in terms of singlet and pair
probabilities as discussed in detail by both Dickman and Pesheva for the
square lattice. On the triangular lattice the probability of a 10-site con-
figuration is, in terms of pair and singlet densities, ρ(10)(L,R,0, . . . ,7) =
ρ(2)(L,R)ρ(2)(0,L)ρ(2)(1,L)ρ(2)(2,L)ρ(2)(3,R)ρ(2)(4,R)ρ(2)(5,R)ρ(2)(6,R)

ρ(2)(7,L)/[ρ(1)(L)ρ(1)(R)]4. The sites are labeled (L,R) and numbered
(0–7) as in Fig. 14. Pair density ρ(2)(i, j ) is one of the {bk, wk, zk},
depending on the occupancy and orientation of sites i and j . Likewise,
ρ(1)(i) equals either ρ or (1 − ρ), depending on the occupancy of site i.
The hexagonal lattice has only six sites per cluster, and its configuration
probability is ρ(6)(1,2, . . . ,6) = ρ(2)(L,R)ρ(2)(0,L)ρ(2)(1,L)ρ(2)(2,R)ρ(2)

(3,R)/[ρ(1)(L)ρ(1)(R)]2.
The master equation for bk has the form

dbk

dt
=

nc∑

j=1

G
(j)
k

(
b1, . . . , bnc ;ρ,T , �ε) (2)

where G
(j)
k is the average change in bk per hop on the j th cluster, given

probabilities bi and density ρ, which determine P
(k)
α , and the temperature,

field and rate function �.

G
(j)
k =

∑

α

�bk�(�E
(j)

hop,α
)P (j)

α (3)
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The summation index α runs over 2nsites−1 configurations consistent with
one particle and one hole in the central pair of the cluster. The argument
of the rate function is the same as in Monte Carlo simulation, the energy
change plus the dot product of the field and the particle hop. For the
results given in this paper � is the Metropolis rate function.

Iterative solution of the master equation yields steady-state values of
bk. Extending Pesheva’s entropy postulate from the square lattice (with
two bond directions) to the triangular and hexagonal lattices (3 bond
directions) yields the entropy in terms of ρ and the bk.

S/kB = c1 [ρ ln(ρ)+ (1−ρ) ln(1−ρ)]

−c2

nc∑

k=1

[zk ln(zk)+2bk ln(bk)+wk ln(wk)] (4)

where (c1, c2) = (3,1), (5,1) and (2,1/2) for the square, triangular and
hexagonal lattices, respectively, and kB is Boltzmann’s constant. The poten-
tial to minimize is proportional to Helmholtz energy, A/kB = [U −
U(0)]/(kBT ) − S/kB, where U is the average energy per site (calculated
from the bk) and U(0) is the limit of U at zero temperature, −2Jρz.

The computational procedure is to choose a density, then calculate
the steady-state bk and then the free energy. That procedure is iterated to
find the density, and simultaneously bk, that minimize the free energy. At
low temperature, two densities are found. The two densities approach one
half as the temperature increases, merging at the critical temperature.

Critical temperature as a function of field orientation is shown in
Fig. 15. The angle θ is the angle between the field and lattice vector
e1. At zero field, the maximum-entropy mean field calculations reproduce
the known Bethe pair-mean-field critical temperatures: kTc(0)/J = 1.821
(hexagonal), 2.885 (square) and 4.933 (triangular). The critical tempera-
ture on the square lattice and with an infinite field along [10] is kTc/J =
3.32, as found by Pesheva, and so Tc(∞)/Tc(0) = 1.15. On the trian-
gular lattice with the field along [11], i.e. θ = 30◦, kTc(∞)/J = 5.44, or
Tc(∞)/Tc(0) = 5.44/4.93 = 1.10. On the hexagonal lattice with the field
along [10], kTc(∞)/Tc(0) = 2.54/1.82 = 1.40. On all three lattices and for
all field orientations and magnitudes, it appears that Tc is bounded below
by its pair-mean-field equilibrium value and bounded above by the sin-
glet mean field result Tc = zJ/k. This differs from the Monte Carlo result
that for most orientations on all three lattices a strong field prevents phase
transition. That general behavior is not reproduced even qualitatively by
the present mean field theory.
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Fig. 15. Maximum-entropy mean field critical temperatures for the triangular (top), square
(middle) and hexagonal (bottom) lattices. (- - -) singlet mean field, (−−−) Bethe pair mean
field, (�) ε =Jz, (+) ε =2Jz, (◦) ε =15Jz.

7. SMALL HEXAGONAL LATTICES

Weak size dependence on the hexagonal lattice suggests studying lat-
tices so small that the master equation for configuration probabilities can
be solved exactly. The master equation solution was given in detail by
Zhang(18,19) for square lattices and extended to triangular lattices and a
related hexagonal lattice by Kumaran.(20)

The 2 × 2 hexagonal lattice’s 4 particles on 8 sites assume 70
configurations. With the field oriented along [11] (which is equivalent by
symmetry to [10] for hexagonal lattices) three symmetry operations are
translation along [10] and [01] and reflection across [11]. Those symme-
tries divide the configurations into 13 classes so the transition matrix in
the master equation is only 13 × 13. Symbolic algebra (using Mathemati-
ca(21)) was used to find exact steady-state probabilities. The energy of this
tiny system is shown in Fig. 16. Behavior is similar to that of larger hexag-
onal lattices except that the low-temperature energy is independent of field
strength, not rising to the less-ordered value seen for the larger lattices.
Even though the low-temperature energy is independent of field strength
the configuration probabilities are not. Two classes, each having 4 bonds,
dominate at low temperature. The mix of the two is highly field depen-
dent, as shown in Fig. 17, but because both classes have the same energy
the system’s energy is field independent at low temperature. A strong field
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Fig. 16. Energy of 2×2 hexagonal lattice. Values of ε : (◦) 0, (–+–) 3J , (−�−) 6J , and (•)
infinity. Energies were calculated exactly so markers are merely to help distinguish different
field strengths.

selects the configurations in which the zig-zag chain of bonds is oriented
along the field.

The 3 × 3 hexagonal lattice’s 9 particles on 18 sites divide by
symmetry into 2710 classes. The transition matrix, which is sparse, was
calculated numerically. From that exact transition matrix steady-state
probabilities were calculated by minimizing their time derivatives. As
Fig. 18 shows, the 3 × 3 lattice is large enough that strong fields yield a
high-energy disordered state at low temperature, as Monte Carlo simula-
tions showed for larger lattices. Behavior of the structure factor, Fig. 19,
is also similar to that on large lattices. Because the field is along [11],
S(1,−1) here is equivalent to S(1,0) from the Monte Carlo simulations.
A weak field, ε = J , gives a peak in S(1,−1) at T/Tc(0) = 0.33, kT /J =
0.5. Slightly stronger fields (ε = 3J and 6J are shown) shift the peak to
near-zero temperature. (Unlike the analytical 2 × 2 solutions, the numeri-
cal transition matrix cannot be computed at zero temperature.) Still stron-
ger fields (ε=∞ is shown) reduce the low-temperature ordering along the
field.

Fig. 17. Probabilities of classes (- - -) 0 and (–—) 12 on 2 × 2 hexagonal lattice at
kT /J =0.1, T/Tc(0)=0.066.
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Fig. 18. Energy of 3×3 hexagonal lattice. Values of ε : (◦) 0, (- -+- -) 3J , (−�−) 6J , (-×-)
9J , and (•) infinity.

Fig. 19. Structure factor of 3×3 hexagonal lattice. Values of ε : (◦) 0, (-�-) J , (- -+- -) 3J ,
(�) 6J , and (•) infinity.

There are three classes that have ten bonds, corresponding to the min-
imum 3 × 3 energy, so those three classes are dominant at low tempera-
ture and fields from 0 to about 7J . Figure 20 shows probabilities of those
classes at kT /J = 0.5 (T/Tc(0)= 0.33). One configuration from each class
(each contains 18 configurations) is shown in Fig. 21. At zero field the
three classes are equally probable. Larger fields select class 2439 which has
zig-zag bond chains in the field direction. Unlike the 2 × 2 lattice, still
higher fields spread probability to a mix of higher-energy classes (no one
of which has probability greater than 0.07), resulting in the higher-energy
plateau seen in Fig. 18 at infinite field and T/Tc(0) less than about 0.5.
The transition from low- to high-field probability distribution occurs over
the ε range 6–10J . It is likely that similar probability shifts, over the same
range of field strength but within a much larger space of configurations,
explain the low-temperature high-field plateau in Fig. 12.
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Fig. 20. Probabilities of maximum-bond classes on 3 × 3 hexagonal lattice. kT /J = 0.5,
T/Tc(0)=0.33. Class (–—) 2439, (- - -) 2, (−−−)69. Energy (−◦−) is on the right-hand ordi-
nate.

Fig. 21. Configurations from the maximum-bond classes of the 3 × 3 hexagonal lattice.
(a) class 2439 configuration 27385, (b) class 2 configuration 2, (c) class 69 configuration 201.

8. CONCLUSIONS

In the driven lattice gas with Metropolis rates, and for the orienta-
tions and lattices studied, a strong field prevents transition to an ordered
low-temperature state except when the field is perpendicular to a bond
direction. Qualitatively, that may be understood in terms of stability of
an interface between high- and low-density areas on the lattice. Unless the
field is perpendicular to one of the bond directions, a well-ordered inter-
face cannot be stable under a strong field, which would drive particles
out of the interface. On the triangular lattice, with its six-fold site coor-
dination, an interface along the [11] field and perpendicular to the [1,−1]
bond direction would still be susceptible to field-driven hops in the [01]
and [10] directions. This simple observation may explain the absence of
ordered states for most field orientations, but does not explain the states
observed at high field and low temperature on hexagonal and triangular
lattices.

When the field is perpendicular to a bond direction, then under
an infinite field single-strip states have been observed on the square
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lattice only. The disordered nature of the low-temperature configurations
is strongly system-size dependent on the triangular lattice but independent
of hexagonal lattice size. That is understandable on the hexagonal lattice
because the strips that appear at low temperature, oriented along the field,
are narrow. The broad [11] clustering seen on the triangular lattice at low
temperature is impossible on truly small lattices because the stepped [11]
interface limits the number of bonds. Even on the largest triangular lat-
tices studied, however, the effect of system size on energy is huge at low
temperature and the present work has not extrapolated to triangular lat-
tices of infinite size.

Under low-strength fields both hexagonal and triangular lattice con-
figurations align with the field over an intermediate temperature range,
then freeze to the equilibrium-like solid at lower temperature. Stronger
fields shift the structure-factor peak toward low temperature, leading to a
disordered low-temperature state for fields greater than about 9J . Solution
of the 3 × 3 hexagonal-lattice master equation at low temperature shows
the progression, with increasing field strength, from a normal frozen state
to a field-aligned state and then, at about 9J , to a disordered partially
aligned state.

Two combinations of lattice and field orientation, [10] field on hex-
agonal and [11] field on triangular lattices, lead to steady states that may
show phase transitions as functions of temperature and field strength.
Some properties of energy and structure factors suggest that phase tran-
sitions occur. Energies drop from high-temperature near-disordered values
to low-temperature plateaus and show inflections that correspond to weak
heat-capacity maxima. Structure factor peaks indicate anisotropy along
the field. Both Monte Carlo and exact small-lattice results show an abrupt
change in the low-temperature states as field strength increases on the hex-
agonal lattice.

However, phase transitions should be signaled by singular depen-
dence of properties on control parameters such as temperature and field
strength, and no singularities have been shown here. Exact results on small
hexagonal lattice can only suggest phase transitions. Anisotropic density
inhomogeneity (e.g., Fig. 5) may show interfaces and phase coexistence on
the triangular lattice but interpretation is complicated by strong depen-
dence on system size at low temperature. The maximum entropy mean
field method explicitly locates coexisting states and their critical points but
the predicted critical temperatures appear to match simulations only in the
well-known case of a [10] field on the square lattice. That the field raises
the critical temperature is a striking feature of the square-lattice DLG. The
present data with the present methods do not suffice to locate phase coex-
istence and critical temperatures for the triangular and hexagonal lattices.
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